Размышления о гравитации.
Земля является не шаром, а эллипсоидом, будучи сплюснута с полюсов – так что она имеет так называемую «экваториальную выпуклость». Экваториальный радиус Земли примерно на 21 км больше полярного, и, из-за одной только этой причины, сила тяжести на экваторе должна быть несколько меньше, чем на полюсе. Если прикинуть увеличение экваториального радиуса при условии, что результирующее уменьшение силы тяжести обеспечивается только центробежными силами (из-за собственного вращения Земли), то получается почти 11 км. Причём, если шар превращается в сплюснутый эллипсоид при сохранении своего объёма, то увеличение экваториального радиуса на 11 км вызовет уменьшение полярного радиуса на те же 11 км. Результирующая разность составит 22 км – т.е., величину, близкую к фактической.
Кроме глобальной неоднородности Земли, связанной с экваториальной выпуклостью, есть ведь у неё и более мелкие неоднородности – в распределении плотности вещества в поверхностном слое. Там есть залежи плотных, или, наоборот, рыхлых пород. Есть огромные горные массивы, где плотность пород составляет около трёх тонн на кубометр. Есть океаны, где плотность воды составляет одну тонну на кубометр на всей толще – даже на глубине в 11 километров. А есть лежащие ниже уровня моря долины, в объёме которых плотность вещества равна плотности воздуха. По идее о всемирном тяготении, все эти неоднородности поверхностной плотности должны сказываться на показаниях гравиметрических инструментов. Простейшим из них является отвес: он должен уклоняться в ту сторону, с которой сильнее притяжение поверхностных масс. Так, рядом с мощным горным массивом, отвес должен уклоняться к этому массиву, а на берегу океана он должен уклоняться от океана. Эти уклонения должны быть вполне заметны, например, при сравнении географической широты пункта, полученной двумя способами: астрономическим (с привязкой к отвесной линии) и геодезическим (без такой привязки). Обратите внимание: лишь по теории отвес должен уклоняться, а эти уклонения должны быть заметны… Но на практике оказывается, что никто никому не должен: вышеназванные уклонения отвеса – ни вблизи горных массивов, ни вблизи океанов, ни там и сям сразу – не обнаруживаются. Самое большой шок по этому поводу испытали англичане, которые в середине XIX века проводили изыскания уклонений отвеса южнее Гималаев, а получили шиш. Вообще-то, шиши получались везде, но южно-гималайский случай примечателен тем, что уклонения там ожидались рекордные – ведь севернее находился самый мощный горный массив, а южнее был Индийский океан – так что и шиш получился рекордный.
На эти странности с отвесами можно было бы махнуть рукой. Но у запасливых гравиметристов есть ещё приборы похитрее: гравиметры, которыми измеряют силу тяжести. В результаты этих измерений, конечно, вносят расчётные поправки на поверхностные неоднородности. Рассуждают так: если бы этих неоднородностей не было, то на уровне моря гравитационная сила была бы везде одинакова… Но, раз уж неоднородности есть, то, вооружённые законом всемирного тяготения, будем рассчитывать их вклад и вычитать его из результатов измерений… Тогда, при правильных расчётах-учётах, будем получать ту самую, везде одинаковую гравитационную силу на уровне моря!.. Представляете, сколько было бы радости, если всё получалось бы именно так?! Увы, на практике всё совершенно иначе. Если продраться сквозь терминологические и методологические дебри, которые специально нагромоздили для запутывания непосвящённых, то фактическая картина оказывается вот какой. После внесения, в результат измерения, поправки на поверхностные неоднородности, итоговый результат отличается от той самой величины, везде одинаковой на уровне моря, как раз на значение внесённой поправки. То есть, если поправки на поверхностные неоднородности не вносить, то чистые измерения как раз и дают ту самую гравитационную силу, везде одинаковую на уровне моря. Проще всего это объяснить так: поверхностные неоднородности, хотя и существуют, не оказывают никакого воздействия на гравиметрические инструменты!
Ещё раз: Неоднородности в распределении масс не оказывают воздействия на гравиметрические приборы.
Была ведь мощная кампания по применению гравиметрических приборов – вариометров – для разведки полезных ископаемых. В некоторых случаях вариометры, действительно, указывали направление, в котором находились искомые залежи. Но эти случаи, в полном согласии с теорией вероятностей, происходили из-за того, что если прибор указывает направление совершенно случайно, то рано или поздно он укажет его правильно. Поэтому разработчики месторождений, конечно, принимали к сведению гравиметрические разведданные, а проходку-то вели по данным сейсмических и электромагнитных методов. Но, несмотря ни на что, идея оказалась невероятно живуча: до сих пор разные организации предлагают простакам услуги по гравиметрической разведке.
Это охначает, что тяготение порождается не веществом, не массами.
У шести десятков спутников планет Солнечной системы никаких признаков собственного тяготения не наблюдается! Ни атмосфер у них нет, ни собственных спутничков – по теории вероятностей это ай-яй-яй просто. Но учёные, несмотря ни на что, пребывают в несокрушимой уверенности в том, что собственное тяготение у спутников есть. Иногда на этой почве до смешного доходило. Вот у Юпитера есть четыре крупных спутника. «Ясно же, как пень, - прикидывали учёные, - что эти четыре спутника друг друга притягивают. Значит, каждые три из них влияют на движение четвёртого. Рассмотрим-ка движение этой четвёрочки и выцарапаем их массы, по принципу: у кого масса больше, тот влияет сильнее, а влияется слабее!» Казалось бы – просто. Но эта простенькая задачка доводила исследователей до умопомрачения. Конфуций предупреждал: «Трудно искать чёрную кошку в тёмной комнате – особенно если её там нет». Исследователи про это знали, но думали, что Конфуций предупреждал дурачков каких-нибудь – а мы-то, мол, не дурачки. И вот что у них, не-дурачков, получалось. Брали в обработку движение той четвёрки на некотором интервале времени, делали все мыслимые и немыслимые натяжки, и получали на соплях «наиболее вероятные» значения масс. А потом – впадали в прострацию. Потому что на другом интервале времени натяжки приходилось делать совсем другие, и новые «наиболее вероятные» значения масс не совпадали с ранее полученными. И на третьем интервале – с тем же успехом! И – так далее! Это у них даже называлось соответственно: динамические определения масс спутников. Надинамившись до посинения, решили так: чтобы труды тяжкие не совсем зазря пропали, надо выбрать тот интервал времени, на котором значения масс получились самые-самые вероятные из набора «наиболее вероятных». Вот их-то и выдали. И примечание сделали: «Не повторять! Опасно!»
Чтобы окончательно доказать наличие собственного тяготения у астероидов, провернули беспрецедентную космическую программу, которая официально называлась «вывод искусственного спутника на орбиту вокруг астероида». Американцы всё сделали по науке: отточенными командами с Земли подогнали космический зонд NEAR достаточно близко к астероиду Эрос, причём с нужным вектором скорости, который мало отличался от вектора скорости астероида на его околосолнечной орбите. И затаили дыхание, ожидая, что зонд захватится тяготением Эроса и станет его искусственным спутником… Но увы, с первого раза у зонда с Эросом ничего не получилось. Вышел, что называется, пролётный эффект – только медленно. «Так бывает, - понимающе протянули руководители полёта. – Эй, на штурвале! Давай разворачивай на второй заход!» Отточенными командами с Земли развернули зонд, сориентировали – к звёздам задом, к Эросу передом – и, включив ненадолго движок, попытались подъехать к астероиду с другого бока. Результат вышел тот же, что и на первый раз. Никак не становился зонд спутником Эроса! Вместо запланированного эротического сценария получалась явно какая-то порнография. С выключенным двигателем зонд рядом с Эросом долго не удерживался: уходил от него. Чтобы не отпустить зонд слишком далеко, в какой-то момент включали ненадолго двигатель и изменяли направление дрейфа зонда относительно астероида. Таким образом и гоняли зонд вокруг астероида по кусочно-ломаной траектории. Конечно, об этом не говорили громко, а любопытствующим объясняли, что двигатель включается для коррекции орбиты. Но странная потребность в большом числе незапланированных коррекций орбиты настолько бросалась в глаза, что по ходу дела пришлось придумывать оправдание происходящему. Официальных оправданий придумали два. Сначала выдвинули версию о том, что незапланированные коррекции орбиты требуются для того, чтобы аппарат, со своими солнечными батареями, поменьше находился в тени. Выдвинули – и ужаснулись: даже последний журналист мог бы заподозрить, что программу работы зонда разрабатывали идиоты. Ах, мол, извините: дело совсем в другом! «Видите ли: на зонде установлена куча научной аппаратуры, так вот одна её часть приспособлена для работы на малом удалении от астероида, а другая – на большом. И вот, представьте, прибегают учёные и просят подогнать зонд поближе к поверхности. Подгоняем! А через три дня прибегают другие учёные и просят отогнать его подальше. Отгоняем! А потом снова прибегают те. А потом – снова эти. Задёргали нас совсем!»
Можно подумать, что, из-за противоречивых требований учёных, на протяжении года зонду не дали сделать ни одного витка по нормальной кеплеровой траектории! А ведь после одного-двух таких витков можно было бы сразу вычислить массу Эроса – и это была бы сенсация, которую специалисты ждали. Но быстрого сообщения о массе Эроса не последовало. Раздуватели сенсаций наступили на горло собственной песне?!
Финал миссии NEAR тоже вышел вполне в духе театра абсурда. Изначально планировалось оставить зонд на орбите вокруг Эроса, чтобы надолго сохранилось свидетельство о выдающемся научно-техническом достижении. Но стало ясно, что, без подработки двигателем, зонд вблизи Эроса не держится. Если, после прекращения «коррекций орбиты», зонд ушёл бы от него, многие специалисты могли бы заподозрить, что их дурачили. Вот «руководители пролётов» и решили: когда запасы рабочего вещества для движка подойдут к концу, грохнуть напоследок зонд об поверхность астероида, называя это попыткой посадки. Кстати, к посадке зонд был совершенно не приспособлен, поэтому тех, кто с замиранием сердца следил за официальными сообщениями, свежее решение о смелой посадке на астероид привело в щенячий восторг. Посадка, благодаря отточенным командам с Земли, вышла именно та, что надо: остатки от зонда подавали признаки жизни ещё в течение месяца…
Следующими были японцы. Проблему необходимости подавать команду коррекции орбиты с земли они устранили радикально: зонд ХАЯБУСА («Сокол»), который они отправили к астероиду Итокава (название такое), оснастили несколькими движками и автономной системой ближней навигации, с лазерными дальномерами, так что зонд мог сближаться с астероидом и двигаться около него автоматически, без участия наземных операторов. От операторов требовалось лишь задать режим полёта – держись, соколик, в пятистах метрах от поверхности – а дальше им можно было попивать чаёк. Таким образом, задача удержания зонда вблизи астероида решалась без шума и пыли, и основные усилия японцы сосредоточили на научной программе.
Первым номером этой программы оказался комедийный трюк с высадкой небольшого исследовательского робота на поверхность астероида. Зонд снизился на расчётную высоту и аккуратненько сбросил робота, который должен был медленно и плавно упасть на поверхность. Но… не упал. Медленно и плавно его понесло куда-то вдаль от астероида. Там и пропал без вести. Жалко, дорогая была штучка. Почему-то японцы думали, что рядом с астероидом лишь зонд следует удерживать движками, а вот микроробот – это другое дело, он сам на астероид с неба свалится. И если бы только микроробот! Следующим номером программы оказался, опять же, комедийный трюк с кратковременной посадкой зонда на поверхность для взятия пробы грунта. Комедийным он вышел оттого, что, для обеспечения наилучшей работы лазерных дальномеров, на поверхность астероида был сброшен отражающий шар-маркер. На этом шаре тоже движков не было… и, короче, на положенном месте шара не оказалось… Два прокола подряд и два наскоро состряпанных оправдания – это уже поганенькая статистика набирается. «Слушайте, - завопили журналисты, - вы чем там занимаетесь? В третий раз собираетесь нам лапшу на уши вешать? Так вот: извольте следующую попытку посадки освещать в прямом эфире!» Насколько же был крепок маразм происходящего, если японцы согласились на прямой эфир! Перед операцией долго совещались: сбрасывать ли второй, запасной, шар-маркер, или не сбрасывать, чтобы больше народ не смешить. Решили: не сбрасывать. Несладко пришлось лазерным дальномерам, ну да что поделаешь. А в прямом эфире, на самом интересном месте, связь с зондом, как по заказу, прервалась. Так что сел ли японский «Сокол» на Итокаву, и что он на ней делал, если сел – науке это неизвестно.
Через год, когда страсти поутихли, устроили даже научную конференцию по тематике ХАЯБУСА-Итокава. Демонстрировалась там, между прочим, гравиметрическая карта астероида – красивая, разноцветная. О том, что болванки без движков рядом с астероидом не удерживались, никто уже не заикнулся. Вспоминалось только хорошее.
Ещё нюансы, о которых "не знает" большая наука:
По теории всемирного тяготения какждая массочка притягивает все массочки Вселенной на бесконечных расстояниях. На практике это не так. Размеры сфер тяготения конечны. Ещё удивительнее то, что в большую солнечную сферу тяготения планетарные сферы тяготения встроены таким образом, что в их объёмах солнечное тяготение отключено – там действует только планетарное тяготение.
Планетарные сферы тяготения перемещаются внутри солнечной сферы тяготения – из-за своего орбитального движения в Солнечной системе. Но там, где оказывается планетарная сфера тяготения, солнечное тяготение отключается. Кроме того, радиусы орбит планет таковы, что исключено хотя бы частичное перекрывание сфер тяготения соседних планет. В результате выходит, что, где бы ни находилось маленькое пробное тело, оно везде притягивается только к одному «силовому центру» – к планетарному или к солнечному. (Нам известно исключение из этого правила – в окрестностях Луны. Впрочем, у Луны нет ни одного «нормального» свойства, все её свойства аномальны; мы к ней ещё вернёмся).
В пределах планетарной сферы тяготения, истинной-однозначной является скорость в планетоцентрической системе отсчёта, а вне планетарных сфер тяготения, в межпланетном пространстве – скорость в гелиоцентрической системе отсчёта. Планетарные сферы тяготения движутся вокруг Солнца с космическими скоростями, и, при пересечении пробным телом границы планетарной сферы тяготения, происходит соответствующий скачок его истинной-однозначной скорости.
Это подтверждается практикой межпланетных полётов. При управлении космическим аппаратом, понятие его истинной-однозначной скорости является исключительно важным. Именно её нужно знать, чтобы правильно рассчитывать траекторию и правильно выполнять манёвры, когда ключевым является вопрос о тяге двигателей и расходе топлива. Пока космические аппараты летали в околоземном пространстве, их траектории и манёвры отлично рассчитывались в геоцентрической системе отсчёта. Но при межпланетных полётах ситуация усложнилась. При вылете за границу земной сферы тяготения, ГЕЛИОцентрическая скорость аппарата, с которой он начинает движение по области солнечного тяготения, отнюдь не равна той ГЕОцентрической скорости, с которой он подлетал к границе изнутри. Пока аппарат находится вне планетарных сфер тяготения, превращения энергии при его полёте происходят в однозначном соответствии с его движением в гелиоцентрической системе отсчёта. Чтобы правильно рассчитать корректирующие манёвры на этом участке полёта, нужно знать именно гелиоцентрическую картину движения аппарата. Но, как только аппарат влетает в сферу тяготения планеты-цели, его дальнейшее движение определяется тяготением лишь в направлении к центру этой сферы, а истинной-однозначной становится его скорость в планетоцентрической системе отсчёта.
Источник: О.Х Деревенский "Бирюльки и фитюльки всемирного тяготения" http://newfiz.narod.ru/gra-opus.htm на 22.10.2016г.